

## **Application Note**

## The CS5504 Family Characteristics

The CS5504/5/6/7/8/9 are a series of A/D converters all derived from a high performance  $\Delta\Sigma$  architecture. The CS5504 family members are based on a core architecture including both an analog modulator and a digital filter, with only subtle differences between the individual products. The digital filter has been optimized to attenuate ac line interference (50/60 Hz and their harmonics) when the devices are operated from a low-cost 32.768kHz crystal.

The use of a low-cost 32.768kHz clock provides 20 samples per second from the family. The CS5505/6/7/8 can achieve up 100 samples/second with a 163kHz system clock, while CS5504/9 can achieve up samples/second when operated from it's maximum input clock of 330 kHz. In achieving higher conversion rates, the CS5504 requires slightly higher operating currents than the CS5505/6/7/8. The CS5509 achieves the same high conversion rate as the CS5504 with lower power consumption, but pays a slight penalty in linearity.

Table 1 summarizes the similarities and differences of the CS5504 family.

The CS5504/9 come in smaller packages than the CS5505/6/7/8, however, the CS5505/6/7/8 have more functionality and flexibility. The CS5505/6/7/8 offer a sleep function, an on-chip voltage reference, and multiple serial communication modes.

Table 2 shows the CS5504 family's wide array of power supply options. Note: the CS5509 is single supply, however, the VA+ supply for all devices must always be the most positive operating voltage under all operating conditions, including start-up.

| _                  | _          |          |       |  |  |
|--------------------|------------|----------|-------|--|--|
|                    | VA+        | VA-      | VD+   |  |  |
| CS5504/5/<br>6/7/8 | +5 to +10V | 0V       | +5V   |  |  |
|                    | +5V        | 0 to -5V | +5V   |  |  |
| 37170              | +5V        | 0 to -5V | +3.3V |  |  |
| CS5509             | +5V        | -        | +5V   |  |  |
|                    | +5V        | -        | +3.3V |  |  |

**Table 2. Power Supply Arrangements** 

|        | Resolution | #Channels      | Max.<br>Speed <sup>3</sup> | Linearity <sup>4</sup><br>(Typical) | Sleep | Power  | On-chip<br>VREF | Serial Port<br>Modes <sup>5</sup> | Pin Count |
|--------|------------|----------------|----------------------------|-------------------------------------|-------|--------|-----------------|-----------------------------------|-----------|
| CS5504 | 20-bits    | 2 <sup>1</sup> | 200                        | 0.0007%                             | No    | 4.4 mW | No              | SEC                               | 20        |
| CS5505 | 16-bits    | 4 <sup>2</sup> | 100                        | 0.0015%                             | Yes   | 3 mW   | Yes             | SEC, SSC                          | 24        |
| CS5506 | 20-bits    | 4 <sup>2</sup> | 100                        | 0.0007%                             | Yes   | 3 mW   | Yes             | SEC, SSC                          | 24        |
| CS5507 | 16-bits    | 1 <sup>1</sup> | 100                        | 0.0015%                             | Yes   | 3 mW   | Yes             | SEC, SSC                          | 20        |
| CS5508 | 20-bits    | 1 <sup>1</sup> | 100                        | 0.0007%                             | Yes   | 3 mW   | Yes             | SEC, SSC                          | 20        |
| CS5509 | 16-bits    | 1 <sup>1</sup> | 200                        | 0.0015%                             | No    | 1.7 mW | No              | SEC                               | 16        |

Table 1. CS5504 Family Characteristics

Notes: 1. Fully-differential

- 2. Pseudo-differential
- 3. CS5509 is production tested at 330 kHz (200 samples/second)
  All others are production tested at 32.768 kHz for the best 50/60 Hz rejection.
- 4. These linearity specifications are based on a 20Hz output rate using a 32.768kHz crystal.
- 5. SEC is synchronous external clocking of the data out while SSC is synchronous self-clocking.